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Correlations in Power Residue Generated Random Numbers 

The algebraic basis of harmful correlations in power residue generated random 
numbers is discussed. It is shown algebraically how to pick a multiplier to eliminate 
triplet correlations, and a set of multipliers is suggested to eliminate correlations in 
higher dimensions. Marsaglia’s basis vector test for correlations is improved so it gives 
quantitative agreement with the algebraic method. 

There are many problems in applied mathematics in which the solution is 
found by a “Monte Carlo” method involving the use of a long sequence of random 
numbers, uniformly distributed between 0 and I. A frequently used method of 
generating such a sequence is the power residue method, 

where A and M are integers, ur , 11~ ,... is a sequence of integers, each of which is 
between 0 and M - 1, and IVY, ~7; ,... is a sequence of reals, each of which is 
between 1 and 1 - l/M. The sequence of w’s may not give an accurate solution 
to the problem at hand if it contains correlations, so it is important to detect and 
eliminate correlations. 

Our analysis of correlations is divided into two parts. The first deals with the 
cause of correlations in power residue generated random numbers from an algebraic 
point of view. It is shown how to pick values of A which do not have troublesome 
correlations in three dimensions, and a method is proposed to minimize the 
effects of correlations in higher dimensions. The second section deals with a 
method devised by G. Marsaglia [I] to test whether a given A, A4 produce a 
uniform density in the N-dimensional hypercube. An improvement is made so the 
test is more quantitatively accurate. 

THE ALGEBRAK BASIS OF CORRELATIONS 

The basic method of detecting correlations in a sequence of reals y, , y2 ,..., 
with the y’s uniformly distributed between 0 and 1 is to group successive y’s in 
N-tuples and examine the distribution of points in the N-dimensional hypercube. 
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For example, the numbers of the sequence could be grouped in pairs, (yl, y2), 
(y, , y&... with each pair representing a point in the unit square. If the y’s are 
pairwise uncorrelated, i.e., if the yzn+:! is independent of y2n+l, then the density 
of points will be uniform over the unit square. A nonuniform density indicates a 
correlation. 

All power-residue-generated sequences of numbers fail the pairwise correlation 
test. That is, we can write 

W n,.z = ( Wn,, * A) MOW) (2) 

so that w,+~ is not only correlated with u’,+~, it is a function of it. Thus instead 
of having a uniform density in the unit square, the set of points (wl , w,), (wg , w,),... 
will fall only on a set of lines in the square. For example, if we choose A = 5, 
M = 231 , so w n+l = (5w,) MOD(l), then all pairs (w, , w,+~) fall on the lines 
y = (5x) MOD(l), illustrated in Fig. 1. This type of slow oscillation in two 

1 
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FIG. 1. A plot of y = (5x) MOD(l) in the unit square. The random number generator 
u,,,, = (S*rc,) MOD(231) produces “random” pairs of points, (~,/2~~, ~,+,!2~‘) which lie on the 
lines. 

dimensions is such a great departure from uniform density that A = 5, M = 231 
is unacceptable for almost any application: A Monte Carlo integration in two 
dimensions would, in general, give quite inaccurate results, for example. 

On the other hand, if A and M are large compared to 1, then the lines will be 
close together and from a “macroscopic” point of view, the density is essentially 
uniform. For example, in the IBM 360 subroutine RANDU [2], A = 216 + 3 = 
65539 A4 = 231 w oscillates from 0 to 1 65539 times while w,,.~ goes from 0 
to 1 once, so that :;‘a scale of l/1000, say, the density will appear uniform. One 
cannot get rid of this correlation, but it is harmless for any reasonable problem. 
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Consider next triplet correlations, i.e., form triplets of points (yL , y, , y3), 
(Ya 3 Y5 , Y6)Y., each of which is a point in the unit cube. If the sequence of y’s 
contains no correlations, then the points will have a uniform density in the unit 
cube, or conversely a nonuniform density represents a correlation. 

It was found while doing a random walk in a two-dimensional lattice that 
RANDU has triplet correlations. If we represent w~+~ by x, w,+* by y and w,+~ 
by z, then z is a function of x and y. 

z = (6~ - 9x) MOD(l). (3) 

That is, the triplets fall on a set of planes in the unit cube and therefore are not 
uniformly distributed. As an example, we choose nine consecutive numbers 
generated by RANDU and group them in triplets, along with the above function. 

X Y z (6y - 9x) MOD(l) 

0.3391 0.0345 0.1553 0.1553 
0.6211 0.3290 0.3836 0.3836 
0.3407 0.5918 0.4846 0.4846 

In contrast to the rapidly oscillating pairwise correlations of RANDU, these 
triplet correlations oscillate slowly in the unit cube and could very easily cause 
problems in a Monte Carlo calculation. In fact, they caused a complete breakdown 
of the two-dimensional random walk problem where they were discovered. 

Although it was found by trial and error, one can prove the relation (3) alge- 
braically, using equation (I), with A = 216 + 3, M = 2”. Let 

u2 = [(216 + 3) * ul] MOD(2S1), 

u3 = [(216 + 3) * u2] MOD(231). 

Using modulo arithmetic to add and drop multiples of 231, we find 

u3 = [(21e + 3)2 ul] MOD(231) 

(4) 

= [6 s 216 * u1 + 9 + u,] MOD(231) 

= [6 * (21s < 3) u1 - 9ul] MOD(2=) 
(5) 

= (6 * u, - 9 + ul) MOD(2S1) 

and division by 2ar yields W, = (6w, - 9wl) MOD(l). 
Since slow oscillations in 3 dimensions can cause difficulties, we would like 

a method for choosing values of A which do not have them. One procedure is to 
choose an A and apply Marsaglia’s test to it. This method is not necessary to get 
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rid of triplet correlations, however, because we can algebraically choose “good” 
values of A. Let 

A = 216 + C, (6) 

with C an integer. We then find 

z = (2Cy - C2x) MOD(l). (7) 

Thus if C is large, on the order of 1000, say, then the z(x, y) surface oscillates 
2,000 times in the y direction in the unit cube, instead of six times as it did when C 
was three, while there are 1,000,000 oscillations instead of 9 in the x direction, 
A large value of C therefore produces triplet correlations which oscillate rapidly 
enough to make them harmless in most reasonable problems [3]. 

We can now give conditions for acceptable values of A and M. The optimum 
value of M is set by the computer so that modulo arithmetic is done automatically. 
If the computer stores an integer as a binary number with b digits (b = 31 for 
the IBM 360), then 

M = 2b. (8) 

The integer A must satisfy three conditions: first, in order to obtain the longest 
(M/4) nonrepeating sequence of random numbers [4], A = f3 MOD(8); second, 
if u,+~ is to be as independent as possible of U, , A should be of the order of [4, 51 
M1j2; and third, we should make the triplet correlations as innocuous as possible 
by causing the surface z(x, y) to oscillate very rapidly as a function of x and y. 

To satisfy the first two conditions, we set [6] 

A=2”+C (94 

where n is the smallest integer greater than or equal to b/2, and where [7] 

c Q 2” (9b) 

C = f3 MOD(S) (94 

We see from equation (7) that to make the oscillations rapid, we must choose 

C>l (94 

For example, any of the 258 A’s, 

A = 21s + 21° + 3 + 8n = 66563 + 8m 

or A = 216 + 210 + 5 + 8n = 66565 + 8m 

m = 0, 1, 2 ,..., 27, 
(10) 
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will give very fast, and therefore harmless, triplet correlations for M = 23r and 
would thus be suitable for problems where random points from the unit cube are 
used 181. 

The algebraic detection of correlations in higher dimensions presents severe 
difficulties, and cannot readily be done [9]. If one must do a problem where 
higher order correlations are important, but you do not wish to go to the trouble 
of applying Marsaglia’s test, then the following strategy is suggested. Suppose a 
sequence of L random numbers is needed. Generate the first L/258 of them using 
A = 66563, the second L/258 using A = 66563 + 8, etc. Each A will have its own 
oscillations in N dimensions, some slow [IO], some fast. Since the oscillation 
frequencies for each are presumably different, the net result will be a reasonably 
uniform density. 

BASIS VECTOR DETECTION OF CORRELATIONS 

Marsaglia [I, 111 has devised a test which is supposed to show, with relatively 
little calculation, how uniform or nonuniform the density will be in N dimensions. 
The test, described very roughly, is as follows: A set of N basis vectors, each with 
integer components, is found such that all (u,,, , u,+~ ,..., u,+~) can be written 
as integer linear combinations of them. This basis is changed to a different basis 
by certain rules until an optimum basis is reached in which the new basis vectors, 
which we call BEST2 vectors (after the algorithm for calculating them), are as 
short and as orthogonal as possible, within the confines of integer components. 
The ratios of the lengths of the BEST2 vectors then, according to Marsaglia, 
give a measure of the uniformity of the density. Presumably the closer the ratios 
are to 1, the more uniform the density. 

For example, the ratios [l] in the three dimensional cube for RANDU are 
1:2:1819, which is very far from 1:l:l. And thus the test correctly predicts a 
nonuniform density in three dimensions for RANDU. But if the test is applied 
to A = 4357, M = 235 in two dimensions, the ratio [l] is 1:1810. And since this 
is superficially as “far” from nonuniformity (i.e., 1 :I) as RANDU, we expect a 
highly nonuniform density in the unit square. Algebraically, however, we have 
~',+1 = (w, * 4357) MOD(l), which is an extremely fast oscillation, and is harm- 
less. An actual check [12] of the density also yielded no correlations. 

Thus, Marsaglia’s test is not quantitatively accurate. It can be made so, however, 
if some insight into the properties of the BEST2 vectors is gained. This is most 
easily done by looking at an example, and we choose A = 5, M = 213 = 4096. 
Successive pairs (u, , u,+l ) of points from the sequence u,+~ = (5 * u,) MOD(4096) 
will be points in two dimensional space with integer components, where 
0 < II, < 4096, 0 < untl < 4096. And we know from the algebra section that 
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if the set of points (uJ4096, u,+J4096) is plotted in the unit square, Fig. 1 will 
result. 

The original basis vectors for the sequence are (15) and (0,4096). That is, 
every (4 , ++I) can be written as c1 * (1,5) + c2 * (0,4096), with c1 , cp integer [13]. 
If the BEST2 algorithm is applied, the BEST2 basis vectors are t’l = (15) and 
v2 = (-788,156), and, again, every (u, , u,+~) can be written as a linear, integer 
combination of v1 and vZ . 

The set of all (u, , u,+~) generated by the sequence is (a subset of [13]) the set 
of all integer, linear combinations of zyl and vf which fall within the square 
0 < x < 4096, 0 < J’ < 4096. If we divide each of the components of vi, uZ by 
4096, we can think of them as vectors in the unit square. v&4096 is very short and 
points in the direction of the lines of Fig. 1. u,/4096 points in a direction perpen- 
dicular to the lines and its length, 0.196117, is very close to the distance between 
lines, 0.196116. Thus multiples of vr generate the points within a line in Fig. 1, 
while adding a multiple of ve induces a change from one line to another. 

We can generalize the results to three dimensions. Let us suppose that A, M 
yield no slow oscillations in two dimensions, but do produce slow oscillations in 
three dimensions, so the points fall only on certain parallel planes in the unit cube. 
If we call the BEST2 vectors vl, v*, vQ, they will be (nearly) mutually orthogonal, 
with the longest, c3, perpendicular to the planes. And the length of z13, divided 
by M, will be the distance between planes. Our criterion for a uniform density 
in N dimensions is therefore: If the length of the longest BEST2 vector in N dirnen- 
sions is dmax , then the density is uniform when dmax/M Q 1, but is nonuniform if 
dm,/M is near I. 

How small d,,,/M should be depends on the particular problem at hand. For 
some problems, a distance between planes of l/20 would be sufficient, while 
more precise work may require l/100, or even less. 

We have seen that this criteria works in the simple case, A = 5, M = 214 and 
will now apply it to some of the other A, M investigated by Marsaglia. Consider 
first, A = 4357, M = 235. In place of a direct calculation of the BEST2 vectors, 
we can use the fact, given by Marsaglia, that the ratio of the lengths is 1:1810 and 
their product [14] is M == 235. This yields d,,,/M = 2.29517 x lo-” while the 
actual distance between lines from the function 4’ = (4357x) MOD(l) is 
2.29516 x IO-“. 

The test was also applied to RANDU in three dimensions. The BEST2 vectors 
were calculated and dmsJM was found to be 0.09205741. This compares favorably 
with the algebraically calculated value of l/SQRT(92 + 62 + 12) = 0.09205741. 
Both the algebraic method and basis vector test imply that RANDU does not 
produce a uniform density in three dimensions. 

These examples indicate that our basis vector criterion is quantitatively accurate. 
Marsaglia’s criteria, that length ratios close to 1 imply a uniform density, is 
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justified, as far as we know, only by appeal to our criteria. That is, length ratios 
close to 1 imply C&,/M < 1 which implies a uniform density. For example, if we 
choose M = 235 and N = 5, and if we assume the BEST2 vectors are orthogonal 
and equal in length, then the product of the lengths, d, of the 5 vectors is M4, 
so d/M = M-l15 = 1.0/27 = 0.0078. 

The application of our criteria to higher dimensions is interesting. Let us choose 
M = 235 and N = 10. The optimum case (minimum dmax/M) is for the length 
ratios to be 1. Reference [12] then implies dmax/Mcannot be less than 1/23.5 = 0.09. 
So, it looks like our criteria says there is a nonuniform density. On the other hand, 
M = 235 produces a sequence whose maximum length is 233 and, in 10 dimensions, 
233 points give an average nearest neighbor distance of about 0.1. And a non- 
uniformity of d&M = 0.09 is not bothersome when the nearest neighbor 
distance is about 0.1. We conclude that the test is still useful for “large” N, but 
one must use care in deciding what an acceptable value of dmax/M is. 
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